Stem Cell

At the Andrews Institute, Stem Cells Are Seen As the Next Stage in Sports Medicine

  • Dr. James Andrews, the man who revolutionized orthopedic surgery, is pioneering U.S. research into the use of stem cells to treat not traditional sports ailments as well as, potentiallly, brain injuries. The promise is vast, but so are the questions still to be answered
  • Hall of Famer Bart Starr’s family attributes his recovery from a series of debilitating strokes and seizures in 2014 to stem cell treatment he received in Mexico. Other athletes who’ve sought it include Rafael Nadal, Jamaal Charles and, reportedly, Peyton Manning
  • Research remains in its infancy, but the potential is for quicker recovery from surgery, stronger and more durable repairs, and injuries that heal on their own with stem cell injections. ‘Right now we’re just guessing,’ says Andrews

GULF BREEZE, Fla. — To find the future of sports medicine, head to the Andrews Institute and inside the Athletic Performance & Research Pavilion, past the bespectacled, lab-coat wearing wooden pelican in the lobby. Take the elevator up one floor, turn right and traverse the long hallway. Don’t miss the sign—“Regenerative Medicine Center”—written in small letters on the door. That’s it. No blinking neon bat signal announcing: Behold, three rooms that could change sports!

Of the hundreds of doctors, therapists and clinicians who work for the renowned orthopedic surgeon Dr. James Andrews, only five know the code that opens the door. One is Adam Anz, a doctor whose angled face and long, brown hair suggest a swapped-at-birth Wilson brother who chose medicine over movies. He strides down the hallway, each step closer to the entrance and thus the future, glances left and right, then punches in the code.

Anz, 36, dons blue scrubs and tucks his wavy locks into a teal surgical cap before entering the most sterile of laboratories. He proceeds to the far back corner, where near the red can labeled “biohazard” there rests an oversized steel tub stamped ominously with “Liquid Nitrogen Vapor Freeze Freezer.” Anz opens the lid and wisps of white haze curl toward the ceiling. “Liquid nitrogen isn’t the safest thing in the world,” he says, as he reaches inside, grabbing containers filled with 40 small vials apiece. Each vial holds about four milliliters of stem cells and all their magical potential.

A quick science lesson: At a basic level, stem cells respond to stress and heal injuries. They’re the key to the human body’s internal repair system. They replenish adult tissues. How they work is so complex that doctors aren’t even exactly sure, but what’s important is that stem cells can monitor, respond, divide, heal and release other molecules to tell other cells how to help aid in in healing. Because they’re so adaptable—a five-tool cell—scientists think they’re capable of everything from regenerating cartilage, helping to fix torn ligaments and damaged rotator cuffs, to repairing traumatic brain injuries.

Adam Anz, M.D., retrieving cells from the liquid nitrogen vapor phase freezer in the Andrews Institute Regenerative Medicine Center.

Tim Ludvigsen (Tim Ludvigsen Photography)

This hope carries widespread implications into the sports world. Fewer surgeries. Faster recovery times. Football and basketball players who return to action after torn ACLs in three to four months. Teams that harvest and bank stem cells from their players to treat injuries as they occur throughout seasons. Cartilage repaired before ligaments are fully torn. Partial tears that can be fixed without surgery.

That’s only one prong, for current athletes. Then there are possible stem cell therapies for former players: treatments that ease knee, hip, shoulder and joint damage; accelerate muscle repair; or counter early-onset dementia, brain damage, or strokes.

This lab exists for those reasons, so Anz can unlock the cells’ power to heal and apply those powers to injured athletes. As the liquid nitrogen swirls and evaporates around him, Anz stops, as if pondering the magnitude of what he says next, which is, “These technologies have the potential to impact everything we do.”

What’s possible? “No telling,” says Andrews, the most respected doctor in sports medicine, the preferred surgeon to star athletes. In fact, stem cell research reminds him of the last great invention in his field. The one he bet on more than 40 years ago.

Andrews, 74, reclines on the black leather couch in his VIP waiting room, underneath the framed and signed jersey from soccer goalkeeper Hope Solo that’s hanging on the wall. Clad in gray slacks, brown loafers and black socks, Andrews is on the telephone, only he doesn’t hold his cell to his ear but rather five inches from his face.

He’s advising a young basketball player on how to treat the swelling in his knee. Andrews suggests stem cell treatments to wrestle the inflammation under control before surgery. He would inject the cells into the knee itself, where they would flock to the injury and speed healing. Lately, Andrews finds himself making similar recommendations every week, if not every day.

He listens to the call on speaker and shouts back his recommendations, before kicking up those loafers. “Do you know what it reminds me of?” he asks.

Nearly half a century ago Andrews worked at a hospital in Columbus, Ga. He was certain that a relatively new invention, the arthroscope, would allow for minimally invasive orthopedic surgeries. His partner told Andrews he was wrong, describing the arthroscope as the “devil’s instrument.” Andrews had to leave for another hospital in order to perform arthroscopic surgery. Years later, his old partner sent over a patient and wanted Andrews to scope his knee. “I was right,” Andrews says. “He came around. That was the biggest revelation in sports medicine in the last 40 years.”

Nick Wass/AP

Andrews has spent those years fixing the knees, shoulders and elbows of famous athletes, everyone from Michael Jordan to Bo Jackson to the Manning brothers. In his world, everything connects. Patients to doctors. Ligaments to bones. Even great advancements in sports medicine.

He first met Anz in 2000, after Anz tore his left ACL on the basketball court. Anz’s father noted that his son was in medical school before Andrews performed the surgery. “Maybe one day he’ll work for you,” he told Andrews. Anz just laughed. He wanted to become a heart surgeon, or a neurosurgeon. Orthopedic surgery had never crossed his mind.

Had the stem cell therapies Anz studies existed then he might not have arthritis now. That doesn’t drive him as much as what’s possible. Since the advent of sports medicine, he says, orthopedic surgeons have served as carpenters, carving into knees, sewing ligaments back together, fixing bodies after they have broken. If stem cell therapy works the way he thinks it can, they will become more like gardeners—guiding healing, steering growth.

Andrews first considered the possibility of such treatments around 2000. But the available research and technology didn’t start to match his vision until about five years ago. Even now, he says stem cell researchers know about 10 percent of what they will know, in futures both near and distant.

Experts in stem cell research believe at least 50 countries are currently studying and developing treatment options, many at advanced levels far beyond what’s happening in the United States. Already, at the Andrews Institute alone, they’ve treated at least 200 athletes with their own stem cells. (In other countries, companies grow stem cells for treatments. Their process is more controversial and not yet allowed in the U.S.)

All of these implications come with a giant asterisk. Andrews must tell his patients stem cell treatments are approved only for clinical use in the U.S. The evidence backing their usefulness is largely anecdotal. They aren’t covered by insurance and haven’t been proven safe or effective, at least not by the FDA’s standards—yet. “The problem is the clinical use of new techniques, particularly with professional athletes, gets out in front of the actual…