Genomic vaccines fight disease in ways not possible before

Genomic vaccines fight disease in ways not possible before
This article was originally published by Scientific American.

Standard vaccines to prevent infectious diseases consist of killed or weakened pathogens or proteins from those microorganisms. Vaccines that treat cancer also rely on proteins. In contrast, a new kind of vaccine, which is poised to make major inroads in medicine, consists of genes. Genomic vaccines promise to offer many advantages, including fast manufacture when a virus, such as Zika or Ebola, suddenly becomes more virulent or widespread. They have been decades in the making, but dozens have now entered clinical trials.

Most vaccines work by teaching the immune system to recognize a foe. They accomplish this trick by delivering a dead or weakened pathogen; the immune system recognizes that certain bits of protein, called antigens, on the surface of the pathogen are foreign and prepares to pounce the next time it encounters them. (Many modern vaccines deliver only the antigens, leaving out the pathogens.) To treat cancer, doctors may deliver other proteins that enhance immune responses. These proteins can include the immune system’s own guided missiles — antibodies.

Genomic vaccines take the form of DNA or RNA that encodes desired proteins. On injection, the genes enter cells,…