Cancer

‘Living Drug’ That Fights Cancer By Harnessing The Immune System Clears Key Hurdle

A new kind of cancer treatment that uses genetically engineered cells from a patient’s immune system to attack their cancer easily cleared a crucial hurdle Wednesday.

A Food and Drug Administration advisory committee unanimously recommended that the agency approve this “living drug” approach for children and young adults who are fighting a common form of leukemia. The agency doesn’t have to follow the committee’s recommendation but usually does.

The treatment takes cells from a patient’s body, modifies the genes, and then reinfuses those modified cells back into the person who has cancer. If the agency approves, it would mark the first time the FDA has approved anything considered to be a “gene therapy product.”

The treatment is part of one of the most important developments in cancer research in decades — finding ways to harness the body’s own immune system to fight cancer. And while it has generated much hope, there are some concerns about its safety over the long term — and its cost.

Even so, several of the committee members were unusually enthusiastic in explaining their 10-0 vote recommending approval.

“This is the most exciting thing I’ve seen in my lifetime,” said Dr. Timothy Cripe, an oncologist at the Nationwide Children’s Hospital in Columbus, Ohio.

“This is a major advance and is ushering in a new era in treating children,” agreed Dr. Malcolm Smith, associate branch chief for pediatric oncology at the National Cancer Institute.

For years, scientists have tried to use drugs that stimulate the immune system to fight cancer, and have had only modest success.

In recent years, however, scientists developed a new generation of “immunotherapy” drugs that have produced impressive results for a wide range of cancers by unleashing the body’s natural defense system.

The new treatment is known as CAR-T cell immunotherapy. It works by removing key immune system cells known as T cells from the patient so scientists can genetically modify them to seek out and attack only cancer cells. That’s why some scientists refer to this…