Stem Cell

Neural Stem Cell Renewal Mediated by Strangely Named Gene

  • A long-standing misconception in biology, until recently, had been that the adult brain did not generate new neuronal cells. However, the point of fact is that the brain can produce slightly under a thousand new neurons per day on average. Yet, how this process is regulated molecularly is still a bit of a mystery to researchers. Although now, investigators at Baylor College of Medicine and Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital have just published some interesting new findings that could be the key to understanding how this neuron renewal process works.

    The researchers were able to develop a novel mouse model that selectively identified neural stem cells, the progenitors of new adult brain cells. Consequently, in these mice, the research team found a novel mechanism by which descendants of neural stem cells can send feedback signals to alter the division and the fate of the mother cell. Results from this new study were published recently in eLife in an article entitled “Lunatic Fringe-Mediated Notch Signaling Regulates Adult Hippocampal Neural Stem Cell Maintenance.”

    “Our initial goal for this study was to find a gene that is selectively expressed in primary neural stem cells,” explained senior study investigator Mirjana Maletic-Savatic, M.D., Ph.D., assistant professor of pediatrics and neurology at Baylor and Texas Children’s Hospital. “Based on the information obtained from publicly available expression databases, we started with roughly 750 potential candidate genes. It took an enormous amount of hard work and meticulousness to systematically narrow it down to a single gene—it was like looking for a needle in a haystack….